Column
コラム
AIデータ分析コラム【15】振動分析とAIー異常検知や振動制御への導入事例
2024.04.02

お客様から異常検知や故障予兆、機器メンテナンスや部品交換時期の予測、振動制御など、AIで解決できないかといったお問い合わせをいただきます。これらのご要望に対し、振動センサーを用いてデータを収集・分析し、解決策やシステムを提案することが多くあります。今回は、「振動分析とAI」というテーマでデータ測定・分析の際に注意・考慮すべき点、事例などについて紹介します。
目的・用途にあった振動センサーの選定
振動分析をするにあたり、振動の計測には振動センサーを用います。
振動センサーは、物体の振動を表す指標、変位、速度、加速度を物理量として計測し、電圧や電流などの電気的な量に変換する素子です。振動センサーには様々な種類があり、それぞれ特徴や特性が異なるため、測定対象の状況や測定したい振動の周波数帯等による使い分けが重要となります。適切な振動センサーが選定されないがために十分な分析が出来ないこともよくありますので、慎重な選定が必要です。振動センサーの概要は下表の通りです。
設置方法 | 方式 | センサー、測定器 | 観測する物理量 | 特徴、利用シーンなど |
---|---|---|---|---|
接触型 | 圧電式 | 圧電式加速度ピックアップ | 加速度 | 比較的安価で入手しやすい。高周波数までの機械振動や衝撃の計測に利用 |
サーボ式 | サーボ式ピックアップ | 加速度 | 地震観測や建造物の微動測定に利用 | |
歪みゲージ式 | 歪ゲージ式加速度センサー | 加速度 | 低周波数向き | |
周波数変化型 | 周波数変化型加速度センサー | 加速度 | 地震計、構造物モニタリングに使用 | |
非接触型 | 渦電流式 | 渦電流式変位計 | 変位 | タービンや電動機、コンプレッサーといった回転機の状態監視、機械の位置制御に利用 |
静電容量式 | 静電容量式変位計 | 変位 | ナノメートルオーダーの変位測定、精密な位置検出や姿勢制御などに利用 | |
光学式 | レーザー式変位計 | 変位 | 建築物や機械など構造物の振動解析や高精度な距離測定などに利用 | |
レーザードップラー振動計 | 速度 | センサが設置できないような微小な物体や高温の物体の振動測定に利用 |
振動の測定、分析
高精度な機械学習モデルというものはブラックボックス型のモデルが多く、人間がその判断ロジックを理解することが困難であるため、その出力を信頼する事の難しさが技術の導入を阻害することもあります。
例えば営業職で成績によるインセンティブの影響が大きい場合、有望な営業先を選定するためのターゲットリストを機械学習モデルで作成するようなケースではその解釈性が非常に重要になります。
そのターゲットリストを信用するための根拠が示される意義が大きいのは言うまでもありませんが、アプローチをかける際のヒントとなる情報を得るためにもそのような情報が求められます。
ただし、前述のように必ずしもモデルの解釈性は高いわけではなく、「Explainable AI」と呼ばれるモデルの出力結果からその判断で重要視された情報を逆算して抽出し、そのような解釈情報を与えるための技術も存在します。
数値的な精度だけでなくモデルの判断の妥当性を検討するためにも、その判断基準を知ることは重要であり、ホワイトボックス型のモデルを利用できないような場合には上記のような技術を併用することが重要となります。
実測における失敗事例とその対策例
センサーを選定して、測定用機器を構成して、実際に測定を実施する段階で、問題無く測定できる場合、うまく行かない場合が起こりえます。 接触型の振動センサー(加速度センサー、圧電型センサー)にて経験した測定がうまく行かなかったケースとその対策についていくつか紹介します。
(1)センサーを設置した場所や設置方法が悪く、振動がうまく計測できない。
(2)周りの音や振動が大きく、測定したい機器の振動が計測できない。
(3)現場の作業者の話す声や周囲の音が測定データに混入した。
(4)多数のセンサーを使ったら、測定値がバラバラだった。
(1)は、振動の極小点にセンサーを設置してしまって取りたい振動が計測できないケースや、振動センサーの固定方法が悪くてデータが取れなかったなどのケースになります。対象物上のセンサーの設置場所や設置方法を変えて何度か測定しながらの調整が必要になります。設置方法ですが、両面テープや接着剤ですと劣化してはがれてしまうことがあるので、可能であればネジ止めが良いです。
(2)は、工場などのケースが多いのですが、なかなか他の機械を止めることが出来なくて、測定が難航するパターンです。対象のみの測定が困難なため、異常振動が微小だった場合、検知するのに苦労するケースです。
(3)は、2つ目と逆で測定系の周囲が静かな環境の場合に、たまたま人の会話や物音が振動センサーに拾われてしまったといったケースになります。測定中に油断して声を発する、動いて足音を立てるといったケースです。
(2)と(3)については、遮音材や防振ゴムなどパッシブな防音防振対策により完全に消すことは難しくとも低減させることは可能です。測定対象の設置場所を変えることが困難で、防音防振対策の予算が確保できるようでしたら、試されるのも一案です。また、設置するセンサーの個数を増やし、周辺ノイズの侵入経路や発生源を突き止め、対策を打つことも解決策になります。対策実施後、取得された測定データにおいてSN比(信号と雑音の比)が十分取れている場合は、定常的なノイズであれば、フィルタ処理を入れることで改善を図ります。
(4)は、IoT用に購入したセンサーの感度や位相のバラつきによって、測定結果の信頼性が担保できなかったケースです。安価なセンサーではなかなか難しいのですが、感度や位相の校正で改善する、または感度や位相がより近いセンサーを集めることが対策案になります。
これらノウハウに関連して、NTT-ATでは多くの経験・知見を蓄積しております。振動センサーの設置・測定・分析でお困りごとがございましたら、是非一度、当社までご相談ください。お問合せはこちら。
AI処理による異常検知や振動制御の事例
AIによる異常検知の手法としては、定常時と異なる信号が入ってきた場合を定常時と比較して検出する仕組みが採られています。オートエンコーダやその改良版を用いた異常検知手法が提案、研究、商品化されています。弊社では、AI異常予兆検知ソリューション@DeAnoSにて、AIによる異常検知システムを提供可能です。異常検知や予防保全としての活用例としては、以下が挙げられます。
▪️構造物や橋梁の検査
▪️製造設備の部品交換、メンテナンス時期の把握
振動制御については、機械的な仕組みなどによるパッシブ制御や、アクチュエータを用いたフィードバック制御やフィードフォワード制御などのアクティブ制御で振動を抑える手法など様々な研究が行われてきました。時代の流れと共に、AIで用いるディープニューラルネットワークを採用した振動制御システムも登場しています。建築物の振動制御や、微小振動を抑制して機械加工の生産性を向上した例などが挙げられます。
DeAnoSは日本電信電話株式会社の登録商標です。
当社とNTTコム オンライン・マーケティング・ソリューション(株)は、Spotfireの販売契約を締結しています。
TIBCO、Spotfireは、Cloud Software Group, Inc.の商標または登録商標です。
お問い合わせ
AIデータ分析コラム
このコラムは、NTT-ATのデータサイエンティストが、独自の視点で、AIデータ分析の技術、市場、時事解説等を記事にしたものです。
本コラムの著作権は執筆担当者名の表示の有無にかかわらず当社に帰属しております。